Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A tomato glutaredoxin gene SlGRX1 regulates plant responses to oxidative, drought and salt stresses.

Identifieur interne : 000A61 ( Main/Exploration ); précédent : 000A60; suivant : 000A62

A tomato glutaredoxin gene SlGRX1 regulates plant responses to oxidative, drought and salt stresses.

Auteurs : Yushuang Guo [République populaire de Chine] ; Changjun Huang ; Yan Xie ; Fengming Song ; Xueping Zhou

Source :

RBID : pubmed:20862491

Descripteurs français

English descriptors

Abstract

Glutaredoxins (Grxs) are ubiquitous small heat-stable disulfide oxidoreductases that play a crucial role in plant development and response to oxidative stress. Here, a novel cDNA fragment (SlGRX1) from tomato encoding a protein containing the consensus Grx family domain with a CGFS active site was isolated and characterized. Southern blot analysis indicated that SlGRX1 gene had a single copy in tomato genome. Quantitative real-time RT-PCR analysis revealed that SlGRX1 was expressed ubiquitously in tomato including leaf, root, stem and flower, and its expression could be induced by oxidative, drought, and salt stresses. Virus-induced gene silencing mediated silencing of SlGRX1 in tomato led to increased sensitivity to oxidative and salt stresses with decreased relative chlorophyll content, and reduced tolerance to drought stress with decreased relative water content. In contrast, over-expression of SlGRX1 in Arabidopsis plants significantly increased resistance of plants to oxidative, drought, and salt stresses. Furthermore, expression levels of oxidative, drought and salt stress related genes Apx2, Apx6, and RD22 were up-regulated in SlGRX1-overexpressed Arabidopsis plants when analyzed by quantitative real-time PCR. Our results suggest that the Grx gene SlGRX1 plays an important role in regulating abiotic tolerance against oxidative, drought, and salt stresses.

DOI: 10.1007/s00425-010-1271-1
PubMed: 20862491


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A tomato glutaredoxin gene SlGRX1 regulates plant responses to oxidative, drought and salt stresses.</title>
<author>
<name sortKey="Guo, Yushuang" sort="Guo, Yushuang" uniqKey="Guo Y" first="Yushuang" last="Guo">Yushuang Guo</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huang, Changjun" sort="Huang, Changjun" uniqKey="Huang C" first="Changjun" last="Huang">Changjun Huang</name>
</author>
<author>
<name sortKey="Xie, Yan" sort="Xie, Yan" uniqKey="Xie Y" first="Yan" last="Xie">Yan Xie</name>
</author>
<author>
<name sortKey="Song, Fengming" sort="Song, Fengming" uniqKey="Song F" first="Fengming" last="Song">Fengming Song</name>
</author>
<author>
<name sortKey="Zhou, Xueping" sort="Zhou, Xueping" uniqKey="Zhou X" first="Xueping" last="Zhou">Xueping Zhou</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20862491</idno>
<idno type="pmid">20862491</idno>
<idno type="doi">10.1007/s00425-010-1271-1</idno>
<idno type="wicri:Area/Main/Corpus">000971</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000971</idno>
<idno type="wicri:Area/Main/Curation">000971</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000971</idno>
<idno type="wicri:Area/Main/Exploration">000971</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A tomato glutaredoxin gene SlGRX1 regulates plant responses to oxidative, drought and salt stresses.</title>
<author>
<name sortKey="Guo, Yushuang" sort="Guo, Yushuang" uniqKey="Guo Y" first="Yushuang" last="Guo">Yushuang Guo</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huang, Changjun" sort="Huang, Changjun" uniqKey="Huang C" first="Changjun" last="Huang">Changjun Huang</name>
</author>
<author>
<name sortKey="Xie, Yan" sort="Xie, Yan" uniqKey="Xie Y" first="Yan" last="Xie">Yan Xie</name>
</author>
<author>
<name sortKey="Song, Fengming" sort="Song, Fengming" uniqKey="Song F" first="Fengming" last="Song">Fengming Song</name>
</author>
<author>
<name sortKey="Zhou, Xueping" sort="Zhou, Xueping" uniqKey="Zhou X" first="Xueping" last="Zhou">Xueping Zhou</name>
</author>
</analytic>
<series>
<title level="j">Planta</title>
<idno type="eISSN">1432-2048</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Droughts (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Glutaredoxins (genetics)</term>
<term>Lycopersicon esculentum (genetics)</term>
<term>Lycopersicon esculentum (physiology)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Salts (MeSH)</term>
<term>Stress, Physiological (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (génétique)</term>
<term>Glutarédoxines (génétique)</term>
<term>Gènes de plante (MeSH)</term>
<term>Lycopersicon esculentum (génétique)</term>
<term>Lycopersicon esculentum (physiologie)</term>
<term>Sels (MeSH)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
<term>Sécheresses (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Lycopersicon esculentum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Glutarédoxines</term>
<term>Lycopersicon esculentum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Lycopersicon esculentum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Lycopersicon esculentum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Droughts</term>
<term>Genes, Plant</term>
<term>Oxidative Stress</term>
<term>Salts</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gènes de plante</term>
<term>Sels</term>
<term>Stress oxydatif</term>
<term>Stress physiologique</term>
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutaredoxins (Grxs) are ubiquitous small heat-stable disulfide oxidoreductases that play a crucial role in plant development and response to oxidative stress. Here, a novel cDNA fragment (SlGRX1) from tomato encoding a protein containing the consensus Grx family domain with a CGFS active site was isolated and characterized. Southern blot analysis indicated that SlGRX1 gene had a single copy in tomato genome. Quantitative real-time RT-PCR analysis revealed that SlGRX1 was expressed ubiquitously in tomato including leaf, root, stem and flower, and its expression could be induced by oxidative, drought, and salt stresses. Virus-induced gene silencing mediated silencing of SlGRX1 in tomato led to increased sensitivity to oxidative and salt stresses with decreased relative chlorophyll content, and reduced tolerance to drought stress with decreased relative water content. In contrast, over-expression of SlGRX1 in Arabidopsis plants significantly increased resistance of plants to oxidative, drought, and salt stresses. Furthermore, expression levels of oxidative, drought and salt stress related genes Apx2, Apx6, and RD22 were up-regulated in SlGRX1-overexpressed Arabidopsis plants when analyzed by quantitative real-time PCR. Our results suggest that the Grx gene SlGRX1 plays an important role in regulating abiotic tolerance against oxidative, drought, and salt stresses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20862491</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>03</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2048</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>232</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2010</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Planta</Title>
<ISOAbbreviation>Planta</ISOAbbreviation>
</Journal>
<ArticleTitle>A tomato glutaredoxin gene SlGRX1 regulates plant responses to oxidative, drought and salt stresses.</ArticleTitle>
<Pagination>
<MedlinePgn>1499-509</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00425-010-1271-1</ELocationID>
<Abstract>
<AbstractText>Glutaredoxins (Grxs) are ubiquitous small heat-stable disulfide oxidoreductases that play a crucial role in plant development and response to oxidative stress. Here, a novel cDNA fragment (SlGRX1) from tomato encoding a protein containing the consensus Grx family domain with a CGFS active site was isolated and characterized. Southern blot analysis indicated that SlGRX1 gene had a single copy in tomato genome. Quantitative real-time RT-PCR analysis revealed that SlGRX1 was expressed ubiquitously in tomato including leaf, root, stem and flower, and its expression could be induced by oxidative, drought, and salt stresses. Virus-induced gene silencing mediated silencing of SlGRX1 in tomato led to increased sensitivity to oxidative and salt stresses with decreased relative chlorophyll content, and reduced tolerance to drought stress with decreased relative water content. In contrast, over-expression of SlGRX1 in Arabidopsis plants significantly increased resistance of plants to oxidative, drought, and salt stresses. Furthermore, expression levels of oxidative, drought and salt stress related genes Apx2, Apx6, and RD22 were up-regulated in SlGRX1-overexpressed Arabidopsis plants when analyzed by quantitative real-time PCR. Our results suggest that the Grx gene SlGRX1 plays an important role in regulating abiotic tolerance against oxidative, drought, and salt stresses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Yushuang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Changjun</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xie</LastName>
<ForeName>Yan</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Fengming</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Xueping</ForeName>
<Initials>X</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>09</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Planta</MedlineTA>
<NlmUniqueID>1250576</NlmUniqueID>
<ISSNLinking>0032-0935</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012492">Salts</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="Y">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018551" MajorTopicYN="N">Lycopersicon esculentum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="Y">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012492" MajorTopicYN="Y">Salts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>05</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>09</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20862491</ArticleId>
<ArticleId IdType="doi">10.1007/s00425-010-1271-1</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2005 Jul;17(7):1866-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15987996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Aug;27(4):357-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11532181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>In Silico Biol. 1999;1(2):123-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11471245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Nov;19(11):1229-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17073305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(12):3491-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19528529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Aug 1;301(5633):653-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12893945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2009 Apr;7(3):254-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19175519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2008 Dec;46(12):1019-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18768323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Aug;79(16):10764-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16051868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Sep;31(6):777-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12220268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:143-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 May;53(372):1305-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 May;30(4):415-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12028572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Feb;14(2):343-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11884679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 May;53(372):1227-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2006 Sep-Oct;8(9-10):1757-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16987029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Mar;2(2):323-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:247-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Apr 9;27(7):1122-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18354500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Feb;21(2):429-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19218396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 May 10;254(9):3664-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">372193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:373-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2009;43:335-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19691428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(12):3033-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Jan;231(2):361-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19936779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2004 Jun;61(11):1266-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15170506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Apr;50(1):128-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17397508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2008 Mar 19;582(6):848-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18275854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 11;436(7052):793-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16100779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Mar;53(5):790-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18036205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Aug 25;264(24):13963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2668278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Oct;56(420):2673-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16105854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Feb;33(4):691-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1679-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7878039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Sep 8;281(36):26280-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16829529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 1;104(18):7379-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17460036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2009 Nov-Dec;47(11-12):967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19783452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Apr;33(4):453-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2002 Sep;27(9):483-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12217524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2005 Apr;132(7):1555-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Nov;222(5):926-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16034597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2009 Aug;66(15):2539-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19506802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Dec;19(12):8180-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10567543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jun;38(5):850-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15144385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):365-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20074091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Jul;32(7):851-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19236608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Mar 7;283(10):6095-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18156657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Feb;6(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713336</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<region>
<li>Zhejiang</li>
</region>
<settlement>
<li>Hangzhou</li>
</settlement>
<orgName>
<li>Université de Zhejiang</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Huang, Changjun" sort="Huang, Changjun" uniqKey="Huang C" first="Changjun" last="Huang">Changjun Huang</name>
<name sortKey="Song, Fengming" sort="Song, Fengming" uniqKey="Song F" first="Fengming" last="Song">Fengming Song</name>
<name sortKey="Xie, Yan" sort="Xie, Yan" uniqKey="Xie Y" first="Yan" last="Xie">Yan Xie</name>
<name sortKey="Zhou, Xueping" sort="Zhou, Xueping" uniqKey="Zhou X" first="Xueping" last="Zhou">Xueping Zhou</name>
</noCountry>
<country name="République populaire de Chine">
<region name="Zhejiang">
<name sortKey="Guo, Yushuang" sort="Guo, Yushuang" uniqKey="Guo Y" first="Yushuang" last="Guo">Yushuang Guo</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A61 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A61 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20862491
   |texte=   A tomato glutaredoxin gene SlGRX1 regulates plant responses to oxidative, drought and salt stresses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20862491" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020